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[1] The consistency of cloud top temperature (TC) and effective cloud fraction ( f )
retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave
Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated.
Collocated AIRS and MODIS TC and f are compared via an ‘‘effective scene
brightness temperature’’ (Tb,e). Tb,e is calculated with partial field of view (FOV)
contributions from TC and surface temperature (TS), weighted by f and 1�f, respectively.
AIRS reports up to two cloud layers while MODIS reports up to one. However,
MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result,
pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need
for alternatives such as Tb,e. AIRS-MODIS Tb,e differences (DTb,e) for identical observing
scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values
of DTb,e are for high and opaque clouds, with increasing scatter in DTb,e for clouds of
smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in
warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing
and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including
mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The
spatial patterns of DTb,e are systematic and do not correlate well with collocated
AIRS-MODIS radiance differences, which are more random in nature and smaller in
magnitude than DTb,e. This suggests that the observed inconsistencies in AIRS and
MODIS cloud fields are dominated by retrieval algorithm differences, instead of
differences in the observed radiances. The results presented here have implications for
the validation of cloudy satellite retrieval algorithms, and use of cloud products in
quantitative analyses.
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1. Introduction

[2] Improving knowledge of cloud processes and feed-
backs, and their coupling to the global circulation, is one
of the most important contemporary issues in atmo-
spheric sciences and climate studies [Houghton et al.,
2001; Stephens, 2005]. A primary reason for the lack
of immediate and meaningful advances in cloud-climate
research is the large uncertainty associated with taking
observations of the atmospheric cloudy state, including
cloud identification, and quantification of cloud optical,

microphysical, and bulk properties. Even though satellite
remote sensing has provided a global characterization of
clouds, different satellite instruments have not produced
a consistent picture of cloud fields [e.g., Rossow et al.,
1993; Thomas et al., 2004]. Additional measurements from
new sensors aboard the A-Train platforms will provide
further capabilities [Stephens et al., 2002]. Until there is
progress toward reconciling inconsistencies between satel-
lite measurements, and in understanding the information
content of the radiances [Cooper et al., 2006], the full
potential of satellite radiances will not be realized.
[3] This paper initiates an ongoing discussion on how to

reconcile some of the satellite cloud measurements. We
restrict our attention to those parameters primarily affecting
outgoing infrared (IR) radiation, and to the cloud products
derived from the Atmospheric Infrared Sounder (AIRS)
[Aumann et al., 2003] and the Moderate Resolution Imaging
Spectroradiometer (MODIS) [King et al., 1992]. Both
instruments operate on the Aqua platform and view the
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same location on the ground nearly simultaneously. The
AIRS and MODIS instruments provide some operational
redundancy, such as the independent determination of
various cloud properties, which can be used to understand
and evaluate the strengths of their different observational
and retrieval approaches. When differences in the retrieved
geophysical parameters occur, it should be a priority to
reconcile these as much as possible to improve algorithm
performance. Additionally, instrument intercomparisons are
necessary if their data is to be used synergistically so that
the complimentary strengths of each instrument are empha-
sized. For example, higher resolution MODIS data allows
AIRS-scale spatial heterogeneity to be addressed leading to
potentially improved representation of small-scale features
in retrieved cloud quantities [Rossow, 1989; Li et al.,
2004a].
[4] Both AIRS and MODIS on EOS Aqua retrieve

a variety of cloud properties from passive IR measurements
including effective cloud fraction (f), cloud top height (ZC),
cloud top temperature (TC), and effective spectral emissivity
and reflectivity (see Table 1 for a list of symbols). Because
different observational and retrieval approaches are used,
fields of TC and f from the two instruments could be very
different. However, the underlying assumption is that, as
long as the instruments are working properly, the observed
cloud fields should radiate similarly. As will be shown in
section 2, the retrieved fields of cloud properties can, in fact,
disagree substantially. Therefore at a very fundamental
level, we seek to understand if the observed cloud fields
agree at least in a radiative sense.
[5] To address the issue of radiative consistency between

AIRS and MODIS cloud retrievals, we combine retrieved
cloud properties from AIRS and MODIS to arrive at a single
parameter we have termed the ‘‘effective scene brightness
temperature’’ (Tb,e), which facilitates more direct compari-
son of the cloud radiative properties. This parameter, which

is calculated from TC, surface temperature (TS), and f,
provides an integrated view of AIRS and MODIS cloud
scenes. As described below, Tb,e is derived by summing the
contributions of the fractional cloudy and clear-sky areas of
a given AIRS or MODIS field of view (FOV). The
agreement in Tb,e is a necessary, but not a sufficient,
condition for individual agreement in AIRS and MODIS
TC and f. We show that Tb,e is useful for determining the
agreement of TC and f for a variety of cloud opacity, height,
and layering characteristics.
[6] In section 2, the AIRS and MODIS measurement

characteristics and cloud products are presented while
highlighting some of the differences in the retrieval metho-
dologies. Next, the collocation approach of AIRS and
MODIS measurements is discussed and verified. Then,
the method of calculating Tb,e is described, and Tb,e char-
acteristics are compared to individual cloud products.
Section 3 illustrates the behavior of Tb,e using a small
subset of AIRS data. AIRS and MODIS Tb,e differences are
correlated to observed cloud configurations. Then, we
extend the analysis to four additional granules to address
the universality in AIRS and MODIS Tb,e behavior. In
section 4, we conclude and summarize the results.

2. Methodology

2.1. AIRS and MODIS Clouds

[7] AIRS is a thermal IR grating spectrometer operating
in tandem with the Advanced Microwave Sounding Unit
(AMSU). AIRS observes radiance with 2378 spectral chan-
nels ranging from 3.7 to 15.4 mm, has a nominal spectral
resolution of u/Du � 1200, a footprint size of 13.5 km at
nadir, scans ± 48.95� off nadir, and provides 2.916 million
AIRS spectra and 324,000 retrievals globally per day
[Aumann et al., 2003]. The AIRS L2 operational retrieval
system provides cloud top height (ZA), cloud top tempera-
ture (TA), and effective cloud fraction (fA) for up to two
layers (see Susskind et al. [2003, 2006] and Kahn et al.
[2007] and references therein for a discussion on AIRS
operational cloud retrievals). Research efforts are also
underway to retrieve cloud properties, including particle
size, optical depth, cloud phase, and water path [DeSouza-
Machado et al., 2004; Li et al., 2004b; Wei et al., 2004;
Nasiri and Kahn, 2006; Yue et al., 2007]; particle size and
optical depth of coarse mode dust [Pierangelo et al., 2005;
DeSouza-Machado et al., 2006]; and distinguish cirrus from
dust [Hong et al., 2006].
[8] MODIS measures thermal IR emission and reflected

near-IR and visible radiance in 36 bands from 0.415–14.24
mm at a horizontal spatial resolution of 0.25, 0.5, or 1.0 km,
depending on the spectral band [Platnick et al., 2003]. In
this work, we use the 5-km resolution MODIS operational
cloud top temperature (TM) and effective cloud fraction (fM)
derived from the CO2 slicing technique for clouds with
cloud top pressures (PC) less than 700 hPa, or an 11-mm
window channel technique (Tb

11) for PC greater than 700 hPa
[Platnick et al., 2003]. At least 4 of 25 of 1-km pixels
within a 5 � 5 array must be identified as cloudy according
to the cloud mask [Ackerman et al., 1998] in order to
attempt the Tb

11 retrieval [Menzel et al., 2002]. Both TM
and fM are frequently used as a basis for additional cloud
property retrievals. Therefore errors in TM and fM impact the

Table 1. List of Symbols Used and Their Definitions

Symbol Meaning

Bv Planck function
Bv
�1 Inverse Planck function

f Effective cloud fraction
fA AIRS f
fM MODIS f
Df AIRS-MODIS f
I Observed radiance
PC Cloud top pressure (hPa)
Tb Brightness temperature (K)
Tb
11 MODIS Tb at 11 mm (K)

Tb
960 AIRS Tb at 960 cm�1 (K)

Tb,e Effective scene Tb (K)
T b,e
A AIRS effective scene Tb (K)

T b,e
M MODIS effective scene Tb (K)

DTb,e AIRS-MODIS Tb,e (K)
TC Cloud top temperature (K)
TA AIRS TC (K)
TM MODIS TC (K)
TS Surface temperature (K)
DTC TA�TM (K)
tIR Infrared optical depth
tVIS Visible optical depth
ZA AIRS cloud top height (km)
ZM MODIS cloud top height (km)
( )i Layer index
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retrieval of particle size, optical depth, phase (ice, liquid, or
mixed), and water path. This stresses the importance of
validating and improving satellite retrievals of TC and f.
[9] Figure 1 shows the spectral response functions (SRF)

of MODIS superimposed over a portion of a representative
AIRS spectrum. MODIS channels 32–36 sense the surface
and CO2, and are used for TM and fM retrievals, and
channels 29 and 31 sense the surface and H2O vapor
continuum. AIRS uses roughly 50 channels spread over
the 15- and 4.2-mm CO2 bands to detect and locate clouds.
In Figure 1, only the channels in the 15-mm band are shown
for brevity. As indicated by the figure, AIRS and MODIS
TC and f are derived from similar IR spectral regions (at
different spectral resolution) but are based on very different
algorithms. The AIRS algorithm uses minimal a priori infor-
mation, instead relying on a physical retrieval from AMSU
radiances that provide estimates of clear-sky radiances,
whereas MODIS algorithms use a numerical weather predic-
tion model to provide a priori estimates of clear-sky radiances.
The MODIS cloud algorithm operates on 5 � 5 arrays
of MODIS pixels (5 km near nadir resolution) while the
AIRS algorithm operates on 3 � 3 arrays of AIRS footprints
(45 km near nadir resolution). The MODIS algorithm
averages the pixels in the 5 � 5 array that are identified as
cloudy or probably cloudy by the cloud mask [Menzel et al.,
2002] when CO2 slicing is attempted. When Tb

11 is used,
all pixels are averaged in a 5 � 5 array in MODIS Collection
4 data.
[10] The AIRS cloud-clearing algorithm estimates clear-

sky radiances in the presence of cloudiness using the
horizontal heterogeneity within the 3 � 3 AIRS array.
The cloud-cleared radiances are then used to derive the
core sounding products of temperature, water vapor, and
minor gas profiles. The cloud products TC and f are derived
at the end of the retrieval process from differences in
observed and predicted clear-sky radiances. Both AIRS
and MODIS cloud property retrievals assume that clouds
are opaque with near unity emissivity, but AIRS retrieves up

to two cloud layers per retrieval, while MODIS allows for
only a single layer of cloud. Previously, Rossow et al.
[1985] and Wielicki and Parker [1992] showed that differ-
ent retrieval approaches for identical radiance measurements
lead to discrepancies in retrieved cloud quantities. As we
show below, discrepancies in AIRS and MODIS cloud
quantities do arise not only from the fundamentally different
radiance measurements, but more so from the fundamentally
different retrieval methodologies, demonstrated by differ-
ences in AIRS and MODIS Tb,e.

2.2. Collocating AIRS and MODIS Clouds

[11] Comparing retrievals of cloud top height (ZC), cloud
top temperature (TC), and effective cloud fraction (f) from
different measurement systems is challenging. Coincident
cloud measurements disagree for numerous reasons beyond
algorithm-related differences, as described above. The het-
erogeneity of cloud physical properties over spatial and
temporal scales is arguably a principal cause for such
disagreements, especially for comparisons involving time-
integrated point (for example, surface-based) or line (for
example, aircraft) measurements with satellite pixel-level
measurements [Kahn et al., 2005, 2007]. In the case of two
or more independent satellite measurements, an appropriate
and accurate collocation method must be used [e.g., Li et
al., 2004a; Tobin et al., 2006]. Furthermore, the geolocation
of satellite observations has some inherent error [Gregorich
and Aumann, 2003], and the spatial response function is
not necessarily uniform within a FOV, nor is the contrib-
uting radiance necessarily confined within a single FOV
[Cracknell, 1998]. For example, the AIRS detectors are
not perfectly aligned, thus different bandpasses see slightly
different FOVs [Lambrigtsen and Lee, 2003]. As a result,
some AIRS spectra contain discontinuities in radiances that
increase in magnitude with increasing cloud heterogeneity
[e.g., Kahn et al., 2003, Figure 2]. Even a ‘‘perfect’’ coregis-
tration method that uses an exact spatial response function
will be inaccurate to some degree because of geolocation
uncertainties.
[12] To demonstrate the accuracy of the collocation

methodology, we use AIRS granule number 11 on
6 September 2002, located in the subtropical Pacific Ocean
in the Northern Hemisphere, as an illustrative example
(Figure 2). (One AIRS granule = 6 min of data, or 90 AIRS
footprints per scan line � 135 scan lines = 12,150 AIRS
footprints, and 30 AMSU footprints per scan line � 45 scan
lines = 1350 AMSU footprints.) The dominant dynamical
feature is Typhoon Ele, surrounded by a wide variety of
cloud types and clear sky, shown with the AIRS brightness
temperature at 960 cm�1 (T b

960) (Figure 2a). In Figure 2b,
we show DTb � Tb

AIRS � T b
MODIS for collocated observa-

tions equivalent to MODIS channel 31.DTb is within �1 K,
except for within some of the cloud fields, with the biggest
differences (±5 K) along cloud edges at off-nadir scan
angles. Essentially this figure shows the constraints on the
‘‘accuracy’’ of the collocation approach. According to Tobin
et al. [2006], AIRS and MODIS observed radiances in
homogeneous scenes have been shown to agree to within
1.0 K for most MODIS bands, and to 0.1 K for a subset that
includes MODIS channel 31. Thus the differences in DTb
shown in Figure 2b are primarily a result of imperfect
collocation between the AIRS and MODIS observations.

Figure 1. Shown is a representative version 4 cloud-
cleared AIRS spectrum from granule 11 (0105 UTC) on
6 September 2002, in the central subtropical Pacific Ocean.
The MODIS spectral response functions for selected
channels are overlain on the AIRS spectrum, and the
channels used for AIRS cloud retrievals are shown with
arrows.
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A similar pattern would be expected for both TC and f, since
they are derived from the measured radiances, assuming the
retrieval algorithms of AIRS and MODIS were identical.
[13] Collocated DTb in Figure 2b requires three process-

ing steps: the application of (1) a method to collocate simul-
taneous AIRS and MODIS observations, (2) an approach
to smooth MODIS radiances to the AIRS FOV, and (3) a
spectral averaging of the high-spectral-resolution informa-
tion from AIRS to the MODIS spectral resolution. In step 1,
the AIRS FOV is approximated as a circle (at nadir view)
on a spherical Earth and the FOV changes into an elongated
ellipse with increasing view angle (see Appendix A for the
formulation and limitations of the collocation method). For
step 2, centers of MODIS radiances within the AIRS FOV
are weighted equally, averaged over the AIRS FOV, and
then converted to Tb. To calculate step 3, an approximate
method is employed that spectrally averages AIRS radi-
ances to the MODIS spectral resolution. The radiance of
each AIRS channel within the envelope of the MODIS
SRF for channel 31 (centered near 11 mm) is weighted by
the associated value of the MODIS SRF. The weighted-
AIRS radiances are summed, and are converted to Tb. All
AIRS channels within the MODIS SRF are used except

those with excessive noise determined by the AIRS chan-
nel properties file and manual inspection.
[14] Figure 3 shows scatterplots of the individually

matched AIRS and MODIS cloud top pressure (PC), TC,
and f for the granule shown in Figure 2. It is immediately
apparent that, although the same collocation methodology
was applied, the pixel-scale agreement between AIRS and
MODIS PC, TC, and f is poor. To explore the reasons for the
disagreement, we consider the AIRS operational quality
control parameters. One such parameter, ‘‘RetQA’’, indi-
cates the degree of convergence in the AIRS/AMSU
retrieval algorithm and is nonzero when cloudiness is highly
correlated in adjacent footprints (for example, high values
of fA in the 3 � 3 AIRS array) [Susskind et al., 2006] (see
Appendix B for specific details on RetQAFlag). A second
parameter, ‘‘retrieval type’’, indicates failure in one of the
retrieval steps, and is nonzero for precipitating clouds. The
spectrum of possible RetQAFlag values are combined into
three coarse ‘‘categories’’: category 1 is known as ‘‘confident
with sea surface temperature over ocean’’, category 2 as
‘‘retrieval type = 0’’, and category 3 as ‘‘retrieval type 6¼ 0.’’
In general, the cloud amount and opacity increases from

Figure 2. (a) AIRS Tb
960 (K) for the same granule in Figure 1. (b) Collocated DTb for AIRS and

MODIS for an equivalent of MODIS channel 31 (11 mm). (c) Tb,e
A (K). (d) DTb,e (k). The box highlights a

region of focus, to be shown in Figures 6 and 7.
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category 1 to 3, but homogeneous low cloudiness can fall into
category 2. Figure 3 demonstrates that high and opaque
clouds, black points indicating category 3 pixels, have the
best agreement in PC, TC, and f for AIRS and MODIS. This
result is consistent with the sensitivity of CO2 slicing
methods: TC and f for high and opaque clouds are retrieved
with greater accuracy, in general, than for lower and
transparent/broken clouds [Wielicki and Coakley, 1981],

or multilayer clouds [Baum and Wielicki, 1994]. On the
other hand, the category 1 and 2 pixels in Figure 3 show
large disagreement for most FOVs.
[15] As Figure 3 shows, a head-to-head comparison of

individual cloud quantities (for example, ZA to ZM, TA to
TM, and fA to fM) is not necessarily straightforward because
of the different number of cloud layers retrieved, differences
in the detected cloud fields, and algorithmic details of the
retrieval. Therefore in the following section, we combine
TC, f, and TS to construct an ‘‘effective scene brightness
temperature’’, Tb,e, separately for AIRS (Tb,e

A ) and MODIS
(Tb,e

M ) to help assess the radiative consistency between
the retrievals from the two instruments. In this work, we
emphasize Tb,e as an additional constraint in cloud product
comparisons and as a diagnostic tool for retrieval perfor-
mance of particular cloud fields.

2.3. Constructing Tb,e From Retrieved Clouds

[16] One way to compare cloud products between differ-
ent instruments is to perform a radiative transfer (RT)
calculation over a spectral interval for each instrument’s
retrieved state and compare the calculated radiances. In this
type of comparison, the radiances have frequency depen-
dence. Since the cloud retrieval problem is, in general, ill-
posed, a set of cloud parameters derived from one spectral
interval might not necessarily be consistent with cloud
parameters derived from a different spectral interval for
the same instrument [L’Ecuyer et al., 2006]. This is espe-
cially true if the Planck function is highly nonlinear at TC
for one or more of the spectral intervals of interest.
Therefore for comparison purposes, it is desirable to select
a spectral interval removed from those used to derive the
cloud properties. Additionally, it is desirable that the spec-
tral region be mostly sensitive to cloud properties, and not
to background atmospheric composition, thermal structure,
and surface characteristics.
[17] For these reasons we use an idealized long-wave-

length limit RT calculation where the Planck function is
linear over the range of T(z) from the surface to cloud top,
surface and cloud effective emissivity are unity, the effec-
tive reflectivity is zero and the cloud-free air is perfectly
transmissive. In such a regime, the equation for upwelling
thermal IR radiance for a two-cloud system (as retrieved by
AIRS) is:

TA
b;e ¼ f1T1 þ f2T2 þ ð1� f1 � f2ÞTS; ð1Þ

where Tb,e
A is the AIRS Tb,e, Ti is the retrieved cloud top

temperature for layer i, and fi is the retrieved fraction of the
FOV with Ti. In the single-layered cloud system (as
retrieved by MODIS), the equation has the form:

TM
b;e ¼ f1T1 þ ð1� f1ÞTS: ð2Þ

We emphasize that fi is an effective cloud fraction (cloud
fraction � cloud emissivity), so these relationships hold for
semitransparent cloud layers.
[18] Equations (1) and (2) can be derived in the following

manner. For one-dimensional (1-D) RT problems, the
observed radiance I of a given footprint (or pixel) is the sum

Figure 3. (a) Comparison of AIRS (upper level) and
MODIS TC. The comparison is subdivided into three
categories based on the AIRS RetQAFlag. (b) Comparison
of AIRS (upper level) and MODIS PC. (c) Comparison of
AIRS (upper level) and MODIS f.
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of the radiances from i emitting areas (Ii) weighted by fi of
the emitting layer [e.g., Liou, 2002],

I ¼
X

fiIi: ð3Þ

In the longwave limit, the relationship between the Planck
function and the temperature of an emitting layer is
approximately linear, which allows us to state

Tb;e ¼ B�1
n

X
i

fiBn Tið Þ
" #

; ð4Þ

where Bn (Ti) is the Planck function of an emitting layer
with Ti, and Bn

-1 is the inverse Planck function. This can be
rewritten as

Tb;e ¼
X

fiTi: ð5Þ

[19] In simple terms, Tb,e is the sum of all emitting layers,
with each layer weighted by the effective fractional area.
The summation in equation (5) can be expanded to one- and
two-layered (or more) cloud systems with a surface contri-
bution, represented by equations (1) and (2) for AIRS and
MODIS, respectively.
[20] It should be mentioned that Tb,e is an approximation.

Note the frequency-dependence of the Planck function and
the lack of nonlinearity in equations (1) and (2). Since the
spectral channels used in AIRS and MODIS cloud retrievals
are not in the longwave limit (cf., Figure 1), the potential
effects of nonlinearity must be assessed. To summarize, the
frequency dependence of the Planck function increases at
shorter wavelengths in equations (1) and (2). A detailed
discussion and analysis of the effects of nonlinearity is
presented in section 3.2.2. Our findings indicate that the
overall magnitude of the nonlinearity is small and does not
significantly impact the use of equations (1) and (2) in this
study.
[21] Taking the difference between AIRS and MODIS

Tb,e (DTb,e � Tb,e
A �Tb,eM ) is an approximate and first-order

method for comparing the radiative consistency of satellite-
derived cloud products. An example of Tb,e

A is shown in
Figure 2c, while DTb,e is shown in Figure 2d. To construct
Figures 2c and 2d, we require the aggregation of the 5-km
resolution TM and fM fields to the AMSU FOV (the spatial
scale of reported TA); fA is likewise averaged from the 3 � 3
AIRS array to the AMSU FOV. After MODIS cloud
products are collocated to the AMSU FOV, an average of
TM, fM, and TS over the 45-km scale is taken. All values are
weighted equally in the average.
[22] The most obvious differences between the brightness

temperature difference DTb in Figure 2b and the effective
scene brightness temperature DTb,e in Figure 2d are the
increased magnitude and spatial coherency in DTb,e over
DTb. Since a few of the spatial patterns in Figures 2b and 2d
appear to coincide, the collocation approach may explain a
small amount of the variation of DTb,e. On the other hand,
the mixture of negative and positive differences of DTb
between adjacent FOVs in Figure 2b and the more consis-
tent biases ofDTb,e over several FOVs in Figure 2d show that
systematic differences unrelated to the collocation approach

cause most DTb,e variability. Also, note that Tb,e is slightly
larger than Tb

960 in the warmest (and clearest) FOVs, showing
the effects of a perfectly transmissive atmosphere.

3. Results

[23] In this section, AIRS and MODIS Tb,e are compared
for the granule presented in Figure 2. First, DTb,e is related
to heterogeneous cloud features within the granule. Second,
a particular area of disagreement (boxed area in Figure 2) is
highlighted and reasons for DTb,e variability within it are
presented. We will explore the differences and how they
relate to the AIRS and MODIS retrieval types, heterogene-
ity of MODIS cloud within the AIRS footprint, the presence
of overlapping clouds, and other possible reasons. Last, four
additional granules are shown to explore the general appli-
cability of DTb,e.

3.1. Comparing AIRS and MODIS Tb,e

[24] Figure 4 summarizes DTb,e for the three categories of
AIRS RetQAFlag (described in Appendix B and summa-
rized in section 2.2). The poor agreement in individual
AIRS and MODIS cloud products (Figure 3) is greatly
reduced when they are presented as Tb,e, indicating that the
retrievals from the two instruments are more consistent than
might be implied from inspection of Figure 3. This suggests
that the large differences shown in Figure 3 are due to
algorithmic differences in the retrievals, rather than instru-
ment inconsistencies. In this section, we consider some
potential physical reasons for these differences.
[25] The smallest DTb,e is observed for category 3

retrievals, in other words, high and opaque clouds. Note
the cluster of points (7 out of 1350 retrievals per AIRS
granule) in the upper left of Figure 4a. These points come
from pixels in the center of tropical cyclone Ele and are
caused by precipitation contaminating the AIRS/AMSU
retrievals. The scatter for category 2 DTb,e is larger than
category 3. The higher Tb implies that the clouds in category
2 are lower in altitude, optically thinner, and/or partially fill
the AMSU FOV. As discussed earlier in section 2, such
clouds have increased errors in inferred TC and f. The scatter
in categories 1 and 2 is similar. However, a cluster of points
is observed near the maximum Tb,e with DTb,e � 0,
suggesting generally clear-sky conditions, low-level cloud,
or very thin and/or broken cloud cover. Category 1 retrievals
have the highest quality temperature and humidity profiles,
but less skill for TA and fA. On the other hand, category
3 retrievals are among the most skillful for TA and fA as
shown by the small DTb,e, but in these cases, profiles of
temperature and humidity from AIRS are retrieved with less
precision [Fetzer et al., 2006; Susskind et al., 2006].
[26] Another distinct feature in Figure 4a is the positive

bias of DTb,e between 270 and 295 K. Because MODIS
retrievals are at much higher spatial resolution than AIRS,
the 1s variability of cloud top height (ZM) within the
AMSU FOV can be used as a proxy for cloud heterogeneity
(Figure 4b). A scale height of 8 km is used to convert PM to
ZM. While the conversion is not exact, it is sufficient to
demonstrate the relative variability in ZM. Inspection of
Figures 4a and 4b shows that the variability in ZM andDTb,e
are correlated. FOVs with high and opaque clouds, stratus,
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and clear sky have the least variability in ZM because such
scenes are generally homogeneous.
[27] The bias in DTb,e is related to large differences in

AIRS and MODIS TC (DTC), in addition to cloud hetero-
geneity, in Figures 4c and 4d. Figure 4c is a combination of
categories 1 and 3, while Figure 4d is restricted to category
2 to show more clearly AIRS intercategory differences. In
regions of significant cloud heterogeneity, TA is less than TM

by more than 60 K, while DTb,e can range between 10 and
�5 K. Additionally, significant (and negative) DTC is
observed in the warmest FOVs containing little to no
heterogeneity in ZM. This is suggestive of the occurrence
of thin cirrus misclassified by the MODIS retrieval algo-
rithm as low and opaque cloud. Dessler and Yang [2003]
showed that MODIS does not detect much of the cirrus less
than tVIS = 0.2–0.3. Kahn et al. [2007] show that ZA is

Figure 4. (a) DTb,e on the scale of the AMSU FOV for the granule used in Figures 1, 2, and 3, which
is partitioned into three general categories of AIRS retrieval type. (b) As in (a), except colors indicate
1s variability of ZM (km). (c) The 1s variability of ZM vs. DTb,e, with DTC colorized; shown are
categories 1 and 3. (d) As in (c) except for category 2 only. (e) The 1s variability of ZM vs. DTb,e, with
the fraction of MODIS Tb

11 retrievals colorized; shown are categories 1 and 3. (f) Same as (e) except
restricted to category 2.
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statistically significant for fA � 0.05, approximately equal to
tVIS � 0.1. Therefore it is probable that AIRS is detecting
some thin cirrus that MODIS misclassified as low and
opaque cloud.
[28] Note that DTb,e = 0 does not guarantee agreement for

both TC and f; a range of solutions to TC and f can produce
the same value of Tb,e. For instance in equation (2), if TC is
reduced, then f could be reduced by an amount that keeps
Tb,e constant. A particular example of this effect is the
missed detection of cirrus by MODIS that is detected by
AIRS. Therefore the bias of DTb,e in Figure 4a points to a
discrepancy between AIRS and MODIS cloud retrievals
that is not fully explained by compensating errors in TC
and f.
[29] Figures 4e (categories 1 and 3) and 4f (category 2)

relate the MODIS retrieval method discussed in section 2 to
DTb,e by color-coding the fraction of Tb

11 retrievals within
each collocated AMSU FOV. The larger values of DTb,e in
the 270–295 K range correlate well with the increased
fraction of Tb

11 retrievals. In Figures 4e and 4f, the clusters
of FOVs with 100% MODIS CO2 slicing have little
heterogeneity in ZM (1s < 1 km) and a small bias in
DTb,e; similar behavior for FOVs near 100% Tb

11 retrievals
is noted, although a small negative bias in DTb,e is observed
for some of these FOVs. For category 1 and category 2
AIRS retrievals, heterogeneous FOVs have an increasing
percentage of Tb

11 retrievals for increasing positive values of
DTb,e which asymptotes near 60–80%.
[30] Figure 5 quantifies the potential impact of erroneous

TS on Tb,e. The AIRS and MODIS TS fields are inter-
changed between equations (1) and (2) and Tb,e is recalcu-
lated; we use the ‘‘swapped’’ fields of TS as a proxy for the
magnitude of uncertainty in TS. The results are shown in
Figure 5. The difference betweenDTb,e presented in Figure 4
and the recalculated version of DTb,e is plotted as a function
of Tb,e

M for the three categories of AIRS retrieval type. The
change in magnitude of DTb,e for most FOVs is within
±1 K, several times less than the scatter of DTb,e observed

in Figure 4. Thus, the surface contributes at most margin-
ally toward the observed biases and scatter in DTb,e shown
in Figure 4.
[31] To further understand the correlations between the

heterogeneity of cloud cover with the method of ZM retrieval
and the bias in DTb,e, section 3.2 focuses on the highlighted
region shown in Figure 2.

3.2. Reasons for Biases in DTb,e

3.2.1. Scene Complexity
[32] Figure 6 illustrates the spatial correlation of variabil-

ity in DTb,e to ZM within the focus region of Figure 2. In
Figures 6a–6c, cloud-free regions, as classified by MODIS,
are shown in white. Figure 6a shows MODIS cloud fraction
fM, revealing a complex scene centered on broken opaque
clouds (fM near 1) that are surrounded by optically thinner
clouds (fM < 0.5). A comparison of TM (Figure 6b) to fM
demonstrates that the broken opaque cloud tops are close to
the surface (near 300 K), whereas thinner clouds are much
higher (near 230 K). In Figure 6c the method of MODIS
cloud retrieval is shown. Patterns of Tb

11 and CO2 slicing
retrievals correlate with cloud features throughout the
region. The Tb,e

M for the scene shown in Figure 2c is
expanded for the focus scene in Figure 6d, and DTb,e is
presented in Figure 6e. Along the borders of the high and
low clouds, DTb,e is positive and large. The magnitude of
DTC is largest in these border regions as shown in Figure 6f.
However, differences in DTC are not always positively
correlated with DTb,e since Df contributes to the disagree-
ment, as seen in equations (1) and (2). Figure 6 demon-
strates that positive biases in DTb,e are spatially correlated
to heterogeneous FOVs with mixtures of Tb

11 and CO2 slicing
retrievals for MODIS.
[33] The 1-km MODIS radiances are considered in a false

color image, shown in Figure 7a, to understand whether
regions of large and positive differences in DTb,e coincide
with overlapping clouds. To highlight differences in cloud
phase, the MODIS 0.65-mm reflectance (band 01) is mapped
to red, 2.1-mm reflectance (band 07) is mapped to green, and
Tb
11 (band 31) is mapped to blue. Ice clouds tend to be purple,

while water clouds tend toward yellow, but can tend toward
pink if they are opaque and relatively cold. Figure 7a shows
that low-level clouds are mostly small-scale cumulus. Thus,
areas of opaque ice cloud and thin cirrus co-exist with patches
of overlapping thin cirrus and cumulus clouds, consistent
with the region’s cloud climatology.
[34] Figure 7b marks (in color) pixels likely containing

thin cirrus overlapping low-level water clouds using the
algorithm described by Nasiri and Baum [2004]. Three
MODIS bands at 2.1, 8.5, and 11 mm and the cloud mask
[Ackerman et al., 1998] are used to identify overlapping
clouds. Pixels are classified as overlapping on a pixel-by-
pixel basis, but statistics regarding adjacent pixels are used
in the classification process. The color scale indicates the
number of times a pixel is classified as overlapping based
on nearby pixel statistics. A careful visual examination of
MODIS radiances indicates that the algorithm by Nasiri and
Baum [2004] is detecting a majority of the overlapping thin
cirrus and low-level water clouds, although false positives
may occur at 19�W and 189�E. Figure 7b shows that much
of the large and positive DTb,e seen in Figure 6e corre-

Figure 5. Difference between DTb,e in Figure 4 and a
recalculated version of DTb,e versus Tb,e

M. To recalculate
DTb,e the AIRS and MODIS TS fields were swapped
between equations (1) and (2).
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sponds to areas of overlapping clouds, where mixtures of
Tb
11 and CO2 slicing retrievals occur.
[35] The scene variability is related to the MODIS cloud

mask in Figure 7c. A scatterplot of MODIS 2.1-mm reflec-
tance versus Tb

11 is shown for the four cloud mask confi-
dence intervals. The filled ‘‘triangle’’ of points demonstrates
that distinct cloud layers cannot be separated from one
another, and a large amount of variability in Tb

11 of the
clear-sky pixels exists. The 10-K variation in clear sky
Tb
11 shown in Figure 7c is larger than the sea surface

temperature variability and suggests undetected thin cirrus.
[36] The effects of cloud variability and overlap on TM

are considered in Figure 7d. The frequency distribution of
TM is shown in the upper panel for 5-K bins. A bimodal
distribution corresponding to low-level water clouds and
high ice clouds is seen. In the lower panel, the fraction of
TM in each bin with overlapping clouds is shown. If at
least 5 of 25 pixels within a 5 � 5 km region have a high
likelihood of overlapping cloud, the TM pixel is described
as containing overlapping clouds. The lower panel of
Figure 7d shows that a majority of MODIS pixels with
260 < TM< 280K have overlapping clouds (with a significant
minority to 290 K), and they generally correspond to the
warm bias in DTb,e between 270–295 K in Figure 4. This
suggests that different treatments of overlapping cloud in
the AIRS and MODIS retrieval algorithms may explain
some of the discrepancy in Tb,e.
3.2.2. Nonlinearity of Tb,e

[37] As discussed in section 2.3, Tb,e is calculated from
partial FOV contributions of TC and TS weighted by f and
(1 � f ), respectively, using the longwave approximation,
which does not account for potential nonlinear effects.
Since cloudy radiances have some frequency dependence,

the set of cloud parameters derived from AIRS and MODIS
may not be consistent based solely on the choice of channels
used in the retrieval [L’Ecuyer et al., 2006]. If poor fits are
obtained between simulated and observed radiances, this
effect may be enhanced.
[38] Figure 8 demonstrates the effects of nonlinearity for

particular spectral intervals (4.2, 9, and 14 mm) used in
AIRS and MODIS cloud retrievals. Using these wave-
lengths Tb,e is recalculated using equation (4) where the
Planck function is calculated for each surface and cloud
layer for AIRS and MODIS separately. Then, the inverse
Planck function is calculated for the linear sum of the area-
weighted Planck radiances. Figures 8a–8c show that the
primary feature of disagreement in Figure 4, the warm bias
from 270 to 295 K (discussed in sections 3.1 and 3.2.1),
exists at all calculated wavelengths. The effects of nonlin-
earity are stronger at 4.2 mm than at 9 and 14 mm as
evidenced by the larger spread in the distribution; however,
Figure 8 demonstrates that the discrepancy that is attributed
to mixed and overlapping cloud scenes is not due to
nonlinear effects.
[39] The nonlinearity in MODIS cloud retrievals most

closely resembles that around 14 mm and in the window
channels (Figures 8b and 8c) since they form the basis of
the CO2 slicing and window cloud retrievals. In the case of
AIRS, the nonlinearity is a blend of the 14- and 4-mm
channels (Figures 8a and 8b); thus, the total effect is not as
dramatic as the 4.2-mm region alone. Additionally, there is
a tendency for the coldest clouds to increase in Tb,e with
decreasing wavelength. This occurs because of the
decrease in radiance with shorter wavelength in cold scenes;
they contribute a smaller portion to the area-averaged
radiance. Last, note that the scatter in DTb,e increases at

Figure 6. (a) fM. (b) TM (K). (c) Method of TM retrieval; 100 = Tb
11, 0 � CO2 slicing method >100 are

for the five different slicing pairs, and white = clear sky. (d) Tb,e
M for focus region in Figure 2. (e) DTb,e

(K). (f) DTC (K).
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the shorter wavelengths. However, the bias in the warmer
scenes is still identifiable through the increasing scatter,
even at 4.2 mm.
3.2.3. Additional Factors
[40] There are other possible contributors to the bias in

DTb,e. These include the method of averaging MODIS
cloud products to the AMSU FOV and radiative effects
not accounted for in 1-D RT algorithms. In a comparison
study of AIRS and Atmospheric Radiation Measurement
(ARM) program-derived ZC by Kahn et al. [2007], the mean
bias and variability in the agreement of AIRS and ARM ZC
were shown to be a function of the averaging methodology
of ARM ZC. That study included the use of average ZC, the
maximum ZC, or histograms to identify the peak frequency
in ZC over a variable length time window. As a result, an
average of MODIS cloud products (as performed in this
study) to the AMSU FOV is expected to be another poten-

tial source of variability in DTb,e, and is a topic of future
research.
[41] Cloud property retrievals based on plane-parallel

infrared RT theory are poorly suited for pixels containing
partial cloud coverage [Coakley et al., 2005] and inhomo-
geneous cloud structure [Liou and Ou, 1979; Harshvardhan
and Weinman, 1982]. Inhomogeneous clouds are not neces-
sarily blackbodies in the IR, even as tIR approaches large
values. By using window techniques that assume black
cloud (for example, the MODIS Tb

11 retrieval), erroneously
high TC (low ZC) is retrieved. Evidence for this effect in
stratocumulus clouds is presented by Coakley et al. [2005]
and Cornet et al. [2005]. With regard to cirrus, horizontal
inhomogeneities of tIR within a satellite pixel can cause
biases in outgoing longwave radiation [Fu et al., 2000].
Although it is beyond the scope of this work to quantita-

Figure 7. (a) False color image of region shown in Figure 5. MODIS 0.65 mm reflectance (band 01) is
mapped to red, 2.1 mm reflectance (band 07) as green, and Tb

11 (band 31) to blue. (b) Pixels likely
containing thin cirrus overlapping lower level water clouds according to Nasiri and Baum [2004] (in
color), overlaying Tb

11. (c) Scatterplot of MODIS 2.1 mm reflectance versus Tb
11 for four cloud mask

confidence intervals. (d) Distribution of retrieved TM in 5-K bins (upper panel), and the fraction of TM
retrievals with overlapping clouds (lower panel).
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tively relate pixel-scale partial cloud coverage and inhomo-
geneity to DTb,e variability, observational results and mod-
eling studies suggest they could cause some variability in
DTb,e.

3.3. How Consistent is DTb,e Elsewhere?

[42] To explore the global characteristics of AIRS and
MODIS Tb,e, approximately 20 granules have been
inspected from 6 September 2002. In Figure 9, four addi-
tional AIRS granules demonstrate DTb,e for meteorologi-
cally diverse locations: the midlatitude southern and
northern hemispheres (SH and NH, respectively), the trop-
ical eastern Pacific Ocean along the coast of South America,
and the tropical south Pacific. In summary, the behavior of
DTb,e is consistent between Figures 2 and 9, although there
are important scene-dependent differences.
[43] Figures 9a–9c shows the AIRS Tb

960, DTb,e, and a
scatterplot of AIRS and MODIS Tb,e as a percentage of Tb

11

retrievals. This granule is located in the midlatitude SH and
is dominated by uniform cloudiness with 240 K < Tb

960 <
290 K. The positive bias inDTb,e, demonstrated in Figure 4,
is not observed in Figure 9c. A region of enhanced scatter
exists in DTb,e (negative and positive) from 270 to 280 K,
and appears to be correlated to the percentage of Tb

11

retrievals. The absence of a significant bias in DTb,e is
observed elsewhere in high-latitude regions. Positive biases
in DTb,e tend to be largest in tropical scenes, and they
decrease in magnitude with increasing latitude toward the
SH and NH poles. Thus, the discrepancy of AIRS and
MODIS cloud fields illustrated in Figures 2 and 4 could be
greatest in the tropical latitudes. Conversely, in the high
latitudes, smaller DTb,e suggests that head-to-head compar-
isons of individual cloud quantities (TC and f) may be more
straightforward.
[44] In Figures 9d–9f, a scene in the SH central tropical

Pacific is presented. It is primarily composed of broken and
thin cloudiness, including cirrus and cumulus, with a notable
absence of low Tb

960 suggesting deep convection. The largest
biases in DTb,e occur along cirrus edges, as seen in
Figure 2. The warmer FOVs of low-level cumulus and/or
clear sky containing 100% Tb

11 retrievals are clustered near
DTb,e = 0, with scatter of a few degrees. This behavior is
consistent with FOVs in Figure 4b that contain 100% Tb

11

retrievals. A granule in the midlatitude NH including a tail
end of a frontal zone is presented in Figures 9g–9i. It is
similar to the granule in the SH midlatitude, but the lower
latitude FOVs are warmer, and a suggestion of a positive
bias in DTb,e near 265–275 K exists. The FOVs with

Figure 8. DTb,e for three categories of AIRS retrieval type, as in Figure 4a, except for (a) 4.2 mm,
(b) 9 mm, and (c) 14 mm. (d) is a repeat of Figure 4a (for the longwave limit), shown again for
comparison purposes.
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100% Tb
11 retrievals cluster around DTb,e = 0 from 265 to

295 K. The 100% CO2 slicing FOVs have a small negative
DTb,e bias no larger than 1–2 K. Thus, it appears that
discrepancies between AIRS and MODIS cloud fields are a

function of cloud type, which is exaggerated at the lowest
latitudes, a region exhibiting the greatest range of potential
cloud types occurring together (for example, cirrus and
trade cumulus).

Figure 9. (a) AIRS Tb
960 (K) for granule 8 (0042 UTC) on 6 September 2002. (b)DTb,e (K) for the granule

in (a). (c) Scatter ofDTb,e as a function of the percentage of Tb
11 retrievals for the granule in (a). (d)–(f) Same

as (a)–(c) except for granule 9 (0048UTC). (g)–(i) Same as (a)–(c) except for granule 12 (0106UTC). (j)–(l)
Same as (a)–(c) except for granule 191 (1900 UTC). The color bars in (a)–(c) apply to (d)–(l).
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[45] The last sample granule is located along the western
coast of South America (Figures 9j–9l). The eastern Pacific
is dominated by a stratocumulus layer south of 2–3�N, with
the Intertropical Convergence Zone (ITCZ) located from
5� to 10�N. The positive bias in DTb,e is significant
along the southern (and northern) edge of the ITCZ, where
the convection transitions into low-level cumulus. As in
Figure 2, positive biases in DTb,e occur in FOVs with a
mixture of Tb

11 and CO2 slicing retrievals. In the stratocu-
mulus to the south, a negative bias of 2–5 K exists that is
slightly larger (smaller) in some FOVs with slightly lower
(higher) Tb

960. In the neighboring granule to the south (not
shown), the negative bias is reduced to 0–2 K. In the
retrieval of TM using Tb

11, T(z) profiles generated by
numerical weather prediction models are used to assign the
Tb
11 to ZM [Menzel et al., 2002]. Thus, any biases in model-

calculated T(z) are reflected in TM [Kahn et al., 2007]. In
regions such as these that contain strong atmospheric
inversions, significant errors in cloud top height can be
made due to the structure of the atmospheric T(z) profiles.

3.4. Practical Considerations of Tb,e

[46] Many end-users of AIRS and MODIS are not neces-
sarily concerned with all details of the cloud retrieval
algorithms, but they do require a measure of their accuracy
and precision. Calculated Tb,e fields provide an approximate
yet rapid assessment of the consistency of some cloud
properties obtained from independent measurements and/
or algorithm methods. This approach has been demonstrated
herein with AIRS and MODIS onboard EOS Aqua and is
generically applicable to other instrument platforms that
retrieve TC and f. As discussed in section 1, the agreement
in Tb,e is a necessary, but not a sufficient, condition for
individual agreement in AIRS and MODIS TC and f. For
scenes where AIRS and MODIS Tb,e disagree, the end-user
is cautioned that either (or both) cloud fields may be
problematic. For scenes in which AIRS and MODIS Tb,e
agree, the individual fields (TS, TC, and f) may be different
such that they compensate to produce the same Tb,e, which
requires further comparison of TS, TC, and f individually.
[47] In sections 3.1, 3.2, and 3.3, we showed (1) the exis-

tence of a bias in AIRS-MODIS DTb,e, (2) a correlation of
the DTb,e bias with heterogeneous scenes and multilayered/
overlapping cloud, (3) AIRS and MODIS cloud retrieval
algorithm differences dominate collocated radiance uncer-
tainties, and (4) AIRS and MODIS Tb,e agree most closely
in uniform scenes. The bias in DTb,e and its correlative
relationship to complicated cloud configurations are indic-
ative of an inconsistency in the algorithmic treatment of
AIRS and MODIS cloud fields.
[48] The availability of cloud radar and lidar measure-

ments from the surface at the Atmospheric Radiation
Measurement (ARM) program sites [Ackerman and Stokes,
2003], and from space via CloudSat and CALIPSO [Stephens
et al., 2002; Winker et al., 2003], will help to constrain the
ambiguity of compensating effects in Tb,e. Although the
surface- and space-based active measurements of cloud
boundaries coincide with a small percentage of the total
number of AIRS and MODIS swath observations, this
subset will help to determine the capabilities and limita-
tions of cloud fields derived from AIRS and MODIS and
other passive observational platforms.

[49] The results presented herein suggest an organized
collaborative effort between the assorted satellite instrument
and algorithm teams (for example, AIRS and MODIS) is
necessary to reconcile the differences observed in the cloud
retrievals. Previous intercomparisons of algorithms applied
to identical cloudy radiance data sets [Rossow et al., 1985;
Wielicki and Parker, 1992] and comparisons of cloud
climatologies derived from different observing platforms
[e.g., Rossow et al., 1993; Thomas et al., 2004] suggest that
the radiative transfer models, the retrieval algorithms and
their assumptions, and ancillary data used to generate cloud
fields must be carefully evaluated against one another.

4. Summary and Conclusions

[50] The consistency of cloud top temperatures (TC) and
effective cloud fractions (f) retrieved by MODIS and the
AIRS/AMSU observation suite on the EOS Aqua platform
is investigated. Collocated AIRS and MODIS TC and f are
compared using an ‘‘effective scene brightness tempera-
ture’’ (Tb,e), which is calculated for AIRS and MODIS
individually from field of view (FOV) contributions of TC
and surface temperature (TS), weighted by f. The radiance
for a given FOV is the linear sum of radiances from each
fractional area, represented by cloud layers and the surface.
Using the longwave approximation, we replace the Planck
function for each fractional area by TC and TS. Tb,e is
calculated by weighting TC and TS with the f of each cloud
layer and (1 � f) for the clear-sky portion of the FOV. AIRS
reports up to two cloud layers whereas MODIS reports up to
one; however, MODIS reports TC, TS, and f at a smaller
spatial scale than AIRS. The use of DTb,e allows radiative
consistency comparisons to be made that help overcome
some of the difficulties in pixel-scale multi-instrument
comparisons of TC and f.
[51] The poor agreement in individually matched TC and

f is greatly improved when presented as Tb,e. The smallest
DTb,e is observed for high and opaque clouds. For low
altitude, transparent, and broken clouds, theDTb,e variability
increases. This is consistent with the known sensitivity of
IR radiances to TC and f [Wielicki and Coakley, 1981]. The
spatial patterns of DTb,e are systematic and are not well
correlated to AIRS-MODIS radiance differences, which are
more variable but smaller in magnitude than DTb,e. These
results suggest that inconsistencies in AIRS and MODIS
cloud fields are dominated by retrieval algorithm differ-
ences, as opposed to collocated radiance differences.
[52] A distinct feature in DTb,e is a positive bias (AIRS >

MODIS Tb,e) between 270 and 295 K. It is correlated to the
degree of cloud heterogeneity within the AMSU FOV using
the variability of MODIS cloud top height (ZM) as a proxy.
The most homogeneous scenes occur for high and opaque
clouds, stratus, or clear scenes. In regions of heterogeneous
clouds, negative AIRS-MODIS TC (DTC) is found to be in
excess of 60 K. Additionally, significantly negative DTC is
observed in the warmest FOVs containing little to no
heterogeneity in ZM, indicating thin cirrus misplaced by
MODIS as low and opaque cloud. We show that AIRS is
detecting some of the thin cirrus that is misplaced by
MODIS.
[53] We show the positive bias in DTb,e is related to the

MODIS retrieval method (CO2 slicing or a window method)
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[Menzel et al., 2002] by considering the fraction of the
11-mm window retrievals (Tb

11) within each collocated
AMSU FOV. The bias for 270–295 K correlates to the
fraction of Tb

11 retrievals. FOVs with mixed MODIS cloud
retrieval methods are shown to correspond to overlapping
cirrus and low-level water clouds. Using the algorithm by
Nasiri and Baum [2004], a majority of TM retrievals for
260–280 K, and a large minority up to 290 K, have over-
lapping clouds coinciding well to the warm bias in DTb,e.
[54] Additional granules are presented to show the con-

sistency of DTb,e for a variety of observational scenes,
including the NH and SH storm tracks, and equatorial
regions in the central and eastern Pacific Ocean. The warm
bias in DTb,e is largest in warm tropical scenes along the
edges of high clouds, and decreases in magnitude toward
both poles. This suggests that the discrepancy of AIRS and
MODIS may be greatest in the tropical latitudes within
scenes of heterogeneous cloudiness.
[55] Tb,e will be useful as a diagnostic for satellite

retrievals of TC and f. We have shown its usefulness in
finding inconsistencies between two retrieval methods. Tb,e
will also be useful to guide further comparisons of TC and f.
That other retrievals like cloud particle size, optical depth,
cloud phase, and water path may require information about
TC and f stresses the importance of their evaluation and
validation.

Appendix A

[56] Trigonometric relations required to collocate MODIS
pixels within an AIRS FOV are presented; a schematic of
the geometry is shown in Figure A1. This method is
approximate since the AIRS FOV is assumed to be circular
at nadir with an increasingly distorted ellipse at increasing
off-nadir scan angle. In reality, the AIRS FOV is not
circular, nor is the spatial response function uniform. These
shortcomings are expected to have a maximum impact at
off-nadir scan angles in heterogeneous cloud scenes, the
effects of which are seen in Figure 2b. Future comparisons
will include a more realistic FOV with a formal represen-
tation of the spatial response function.
[57] Beginning with the law of Cosines we define

s2 � ð2rs cosaÞsþ ðr2s � r2e Þ ¼ 0: ðA1Þ

Equation (A1) is a quadratic, and we obtain:

s ¼ rs cosa	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ r2s sin

2 a
q

: ðA2Þ

The appropriate solution requires the choice of the negative
sign since the positive sign implies a nonphysical solution
that passes through the Earth’s surface. The slant range
allows one to calculate the ‘‘spreading’’ of the satellite’s
FOV in the along-track (y) direction. Given the size of the
AIRS FOV in degrees, the AIRS nadir FOV in kilometer is
found by multiplying the FOV by the altitude of the
satellite. For AIRS, the nadir FOV is 1.1� � 705 km =
13.535 km. For off-nadir FOVs, size in the y direction is
13.535
s/a, where s is the slant path calculated using
equation (A4), and a is the nominal altitude of the Aqua
satellite (705 km).

[58] Calculating the size of the FOV in the cross-track (x)
direction requires the arc distanceD. Returning to Figure A1,
note that D corresponds to the size of the FOV in the x
direction for the nadir view if a is taken to be one half the
nadir FOV. In general, D can be found using the equation

D ¼ b 
 re; ðA3Þ

where b is the earth central angle and re is 6371 km, the
mean radius of the Earth. The angle b can be found using
the law of Sines,

re

sina
¼ s

sinb
) b ¼ arcsin

s sina
re

� �
: ðA4Þ

In practice, the size of the FOV in the x direction is
calculated by (1) determining s to either end of the FOVand
then (2) subtracting D from the left and right sides of the
FOV.
[59] Collocating the MODIS pixels within the AMSU

FOV is straightforward with AIRS/AMSU and MODIS
geolocation. The MODIS pixels located in between AIRS
FOVs (but located within an AMSU FOV) are not included
in the collocation process. This approach is justified because
AIRS radiances are used to derive TA and fA.

Appendix B

[60] The AIRS L2 version 4 geophysical products have
different levels of ‘‘quality’’ depending on the character-
istics of the observed scene and, to a large extent, the
amount and heterogeneity of cloud cover and the occurrence
of precipitation [Susskind et al., 2006]. A series of internal
consistency checks, presented as ‘‘quality flags’’ in the
version 4 algorithm, are performed during the cloud-clearing
and retrieval process to assess the degree of convergence
in the retrieval solution; they are discussed in Olsen et al.
[2005] and Susskind et al. [2006]. We use RetQAFlag, a
16 bit-based integer indicating whether particular quality

Figure A1. Geometry of a given AIRS FOV used in the
collocation approach. Quantities are as follows: a is the
altitude of EOS Aqua, re is the radius of Earth, rs is the radial
distance to Aqua, s is the slant path from Aqua to Earth’s
surface, a is the scan angle of AIRS, b is the earth central
angle, and D is the arc distance from the subsatellite point of
Aqua to the viewed point on the surface.
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flags are zero or nonzero (0: ‘‘best quality’’, 1: ‘‘good
quality’’, and 2: ‘‘do not use’’), and whether the steps in the
cloud-clearing and retrieval process are passed, rejected, or
not attempted.
[61] The value of RetQAFlag is grouped into three

general categories: (1) RetQAFlag = 0, where all bits in
the first and second bytes = 0, (2) RetQAFlag 6¼ 0, where
one or more bits in the first byte 6¼ 0 (byte 1 = bits 8–15),
and (3) one or more bits in the second byte 6¼ 0 (byte 2 =
bits 0–7). In the AIRS algorithm, category 1 is known as
‘‘confident with SST over ocean’’, category 2 as ‘‘retrieval
type = 0’’, and category 3 as ‘‘retrieval type 6¼ 0’’. The
category 1 retrievals are relatively clear ocean scenes where
the normally challenging TS retrieval is deemed reliable.
The category 2 retrievals are for scenes where each step in
the AIRS retrieval process is successful. However, some
bits of the first byte of RetQAflag may indicate that a lower
altitude portion of T(z) is less reliable and, hence, invalid.
The yield of this category increased considerably in version 4
since portions of T(z) are allowed to be invalid. The
category 3 retrievals include cases where the IR retrieval
fails and defaults to a microwave-only retrieval, or when the
microwave retrieval fails in the presence of precipitation.
Category 1 is considered an ‘‘ideal’’ retrieval for highly
accurate T(z), q(z), TS, and other quantities. However, this is
not necessarily true of the cloud products [Kahn et al.,
2007].
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